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The Challenge of
Identifying Greenhouse

Gas-lnduced Climatic Change

Michael C. MacCracken

Introduction

Observations and diagnostic studies clearly Indicate that the

atmospheric concentrations of CO 2 and other trace gases have been

rising steadily as a consequence of human activities. Laboratory
experiments demonstrate that these increased concentrations will

enhance the infrared absorptive capacity of the atmosphere, thereby
Intensifying the natural greenhouse effect that sustains the earth's

climate well above freezing. Theoretical calculations suggest that the

enhanced greenhouse effect since the 18th century should have

measurably warmed the global climate, and indeed some warming

has apparently occurred. Some environmentalists are suggesting
that these results alone require that societal activities be substan-

tially altered to prevent further climatic change. Critics may agree to

cost-effective actions that also serve other purposes, but argue that

the theoretical projections must be observationally confirmed before

drastic steps are taken. This confirmation that greenhouse gas

emissions are indeed causing significant climatic change has
become a critical research challenge.

Successfully meeting this challenge Is critical for several reasons.

First, it would provide an affirmation of scientific understanding of

the climate system, confirming that its behavior can be projected, at

least within some limits to be identified. Second, being able to con-

firm that the enhanced greenhouse effect is occurring on a global

scale will help in reducing uncertainties {i.e., constraining the range

of possibilities suggested by models) and in enriching our under-

standing about how climate changes may be evidenced on a regional
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scale. Third, being able to say with high statistical confidence that

the initial stages of the changes have been identified and attributed

to greenhouse gases will provide an incentive for enhanced efforts to

improve understanding of potential impacts on societal resources

and public and political appreciation of the need to consider societal

responses to limit or adapt to future changes in climate, i

Meeting the challenge of identifying greenhouse gas-induced cli-

matic change involves three steps. First, observations of critical

variables must be assembled, evaluated, and analyzed to determine

that there has been a statistically significant change. Second, reli-

able theoretical (model) calculations must be conducted to provide a

definitive set of changes for which to search. Third, a quantitative

and statistically significant association must be made between the

projected and observed changes to exclude the possibility that the

changes are due to natural variability or other factors. This paper

provides a qualitative overview of scientific progress in successfully

fulfilling these three steps.

Selecting Climatic Measures

Climate is a term that encompasses the mean and the higher sta-

tistical moments of all measures of the state of the atmosphere, the

oceans, the cryosphere, and, in its broadest sense, at least some

descriptors of the biosphere. For a number of reasons, the search for

changes has been and must be narrowed to a limited set of variables.

Of primary importance, accurate observational records of the cli-

matic parameters need to exist over a long enough time to determine

whether a change has occurred. This requirement is not easily satis-

fied. First, the observations must be taken with sufficient precision

that real changes can be distinguished from ones due to changes in

instruments, in measurement protocol (e.g., time of day of measure-

ment), and in or around the measurement location (e.g., station

moves, urbanization, desertification, irrigation). Although there are

a number of approaches to adjusting the observational record to

account for such shortcomings, experience indicates that, because

most observations are taken to aid in weather prediction rather than

to document climatic change, the "corrections" are often nearly as

large or larger than the greenhouse signal to be identified.

t

lit should be noted that detection of change will likely mean that an inde-

pendent mathematician would be convinced that the present climate is dif-
ferent than that for some period in the 19th century, and not that a recent
or sudden change has occurred, as so often seems to be implied by press
accounts. Given the large range of paleocllmatic changes, being able to

totally rule out natural variations as a cause may not be possible.
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Second, the length of the record must be sufficiently complete

(i.e., without long gaps) and long enough that the long-term changes

associated with the changing greenhouse gas concentrations can be

distinguished from fluctuations due to other factors. Natural fluctu-

ations and variations can occur on scales from seasonal to interan-

nual to decadal and longer and can result from inherent natural

variability (e.g., atmosphere-ocean coupling) and radiative forcings

other than those due to changes in greenhouse gas concentrations

(e.g., volcanic activity, solar variability). Because the forcing-

response patterns of these nongreenhouse variations are poorly
understood, the requirement to have a long record Is reinforced

because of the need to establish a baseline climate to which to refer-

ence the greenhouse-induced change. Because the concentration

changes (and presumably the induced climatic changes) have been

occurring for more than 200 years and because climatic observa-

tions go back only about 100 years, even the longest sets of observa-

tions available allow examination only of trends (or changes in

trends). These limits on the length of the record thus complicate

identification of the greenhouse signal. (There are proxy or recon-

structed records that extend further into the past, but these mea-

sures are less accurate due to the assumptions and transfer tech-

niques that must be used to make them equivalent to presently
observed climatic parameters.)

Because the temporal variability of the climate increases as the

spatial scale decreases, having records of climatic variables over

large areas allows averaging that tends to reduce the variability and

more clearly shows the smaller, longer-term changes in climate. It is

thus desirable to have records that can be used to generate hemi-

spheric or global averages. This requirement, however, conflicts with

the earlier requirements because spatial coverage generally
decreases for older records (particularly over ocean areas and in the

Southern Hemisphere). Ensuring consistency of instrument usage
and the need to average records of different stations also can intro-

duce difficulties. These difficulties Include uneven spacing of sta-

tions, the differing baseline conditions at different stations (a factor

that usually leads to averaging of deviations from a baseline value

rather than averaging of the observations themselves), differing

durations of the records at different stations, and different types of

instruments and measurements in different regions (land vs. ocean,
one country vs. another, etc.).

Given these many complications, the set of variables that might

be analyzed to seek greenhouse gas-induced climatic change is not

large. Table 1 lists parameters that might be analyzed. The entries

are separated into those for which reasonable records exist and
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_able I : Parameters expected to be changed by greenhouse

las-induced climatic change

Parameters for which useful records exist

Near-surface air temperature
Sea surface temperature

Stratospheric tem]_erature
Precipitation over land
Sea ice extent
Sea level

Parameters for which limited areal or temporal records currently exist

Tropospheric temperature
Upper ocean temperature*
Subsurface temperature (e.g., in permafrost)

Atmospheric water vapor
Snow cover/mountain glacier extent

Ocean clrculation/sallnity
Atmospheric chemistry
Ecological systems (extent and character)

*Over the next decade, a new acoustic measurement technique may
elevate this parameter to the first category because the noise level of

the technique is quite low.

those for which records may be developed in the future, but for

which there are now overriding limitations in the areal extent of the

measurements or the length and consistency of the record.

For those measures for which there is an extended record, there

remains a range of problems in attempting to determine trends.

None of the records is long enough to provide a baseline climate

before greenhouse gas concentrations started to increase. Most sta-

tistlcal techniques assume the individual (e.g., annual) data points

are independent and/or normally distributed, neither of which is

true for climatic data; as a consequence, such techniques must be

applied with caution. The limited length of the record, low-frequency

variability, and changing spatial coverage of the measurements fur-

ther complicate the analysis (Wigley et al., 1985).

Although the discussion here will cover only those parameters for

which extended records now exist, there is great expectation that

new techniques will make additional records available over the next

decade. For example, Spencer and Christy (1990) are using satellite

microwave radiance data to derive a precise, low-noise measure of

midlevel tropospheric temperatures, and Munk (Gibbons, 1990) pro-

poses to use acoustic signals to provide a temperature record of

similar quality for the upper ocean. Permafrost temperature records

will also become more abundant as measurements are made in the

Eurasian Arctic.

At present, however, the set of measures now available to use in

seeking to identify greenhouse gas-induced climatic change is
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rather limited, consisting mainly of temperature, sea ice, and sea

level. In addition, none of the records goes back in time before the

start of significant increases in the concentration of greenhouse

gases; as a result, we have no truly independent and highly resolved
record of the natural variability of the climate.

Theoretical Estimates of Climatic Change

The concentrations of greenhouse gases have been increasing

since the mid-1700s, with the CO 2 concentration having increased

about 25% and the CH 4 concentration having more than doubled

(Watson et al., 1990). These changes would imply that the climate

has therefore been changing due to these emissions for more than

200 years, albeit at first quite slowly. If we are to be able to associ-

ate past changes in climate with these increasing concentrations, we

must have available theoretical estimates of what the induced

changes in climate were. Although climate models have been

improving over their 30-year history, there has not yet been even

one globally resolved model calculation attempting to simulate the

last 200 years. There have been very few calculations attempting to

realistically simulate the last 30 years (Hansen et al., 1988). That

model had a simplified ocean and did not represent the residual

effects of concentration changes earlier than its starting date of

1958, even though Hansen et al. (1988) estimate that the e-folding

time of the oceanic response was of the order of 100 years.

Given the requirement for a theoretical estimate of the change to
demonstrate Identification {or detection), the lack of such an esti-

mate obviously prevents attainment of the objective, at least without

approximation. This failure to conduct the required simulation

arises not primarily because of limitations in computer resources

(although this is an important constraint). First, we do not have

information about initial oceanic conditions, and about volcanic

eruptions, solar variability, and other natural climate-forcing factors

that would also be affecting the climate. Second, we do not yet have

adequately verified, coupled atmosphere-ocean models capable of

such simulations. Third, any such simulation experiment must be

made in recognition of the confounding influence of natural variabil-

ity, which Is not yet either adequately understood or properly
treated in the models. As a consequence, we are quite far from hav-

ing the necessary model simulation(s) to permit accurate estimation

of greenhouse gas-induced climatic change.

To sidestep this lack of the proper simulation, estimates of the

greenhouse gas-induced climatic changes are commonly used, even

though there are many simplifications and pitfalls involved in devel-

k
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oplng these approximations. The preferred technique for deriving
estimates of the climatic change expected over the industrial period

is to interpolate between equilibrium simulations of one and two

times the 1950 (or thereabouts) concentration of C02, using the

radiative forcing at the tropopause from the increasing concentra-

tions of CO2 and other trace gases as the interpolant. Account must

also be taken of the role of the oceans in diminishing or postponing

some fraction of the scaled equilibrium change, which requires that

we understand how the oceans work. Modeling studies indicate that

the instantaneous climatic effect may be reduced by 20-50% and

that the oceanic response time may be from a few decades to much

more than a century. Paleoclimatic studies suggest that the entire

oceanic circulation can respond, which would further complicate the

estimation of the expected change.

In addition to the uncertainties introduced because of limitations of

and differences among models (which are extensive; see Grotch and

MacCracken, 1991), this interpolative approach assumes that equiva-

lent global radiative forcing by CO2 and other trace gases will have the

same climatic effect (see, however, Wang et al., in press, which sug-

gests this may not be the case), that equilibrium climatic changes will

look like time-dependent changes, and that climatic change is linear

in radiative forcing. Each of these assumptions is known to be at least

slightly incorrect. Different trace gases have different latitudinal and
altitudinal effects on radiation. Model simulations of transient

changes (e.g., Schneider and Thompson, 1981; the most recent gen-
eral circulation model results are reviewed in Bretherton et al., 1990)

indicate that changes are not equally proportional at all locations, and

clearly the large temperature changes associated with the meltback of

Arctic ice are not equal in all seasons, but occur initially in the transi-

tion seasons rather than in winter as doubled C02 simulations would

suggest. Lorenz (1984) has pointed out that the climate may not be

transitive; that is, the climate may have more than one stable state.

As a consequence, it is conceivable that the climate may not change

gradually, but rather may jump from one state to another, thereby

nullifying the linear assumption. (The relatively rapid warmings cen-

tered around 1920 and 1980 would seem to support this proposition.)

Theoretical calculations (Wigley and Schlesinger, 1985) also suggest

that the climatic change at any time is dependent on the rate of

change of forcing and the ultimate equilibrium change, thereby mod-

erating the linear approximation. As other examples of nonlinearity,

precipitation patterns shift (causing wetter and drier changes that

cannot be linearly approximated), mountain glaciers eventually com-

pletely disappear, and sea level increase has a very long time constant

because of the time for heat uptake in the deep ocean.
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Brushing aside all of these approximations and uncertainties (and

more), radiative model calculations (Shine et al., 1990) suggest that

the greenhouse forcing at the tropopause has been 2.45 W/m 2 since

1765 (about 1.92 W/m 2 since 1900) in comparison to the 4.4 W/m 2

usually associated with a CO 2 doubling. If temperature changes are

linear in forcing and the climatic sensitivity to a CO 2 doubling is 1.5

to 4.5°C, then, before accounting for ocean lag, the expected equilib-

rium temperature change since 1750 Is about 0.8 to 2.5°C (about

0.65 to 1.95°C since 1900). Although not valid on a local basis, the

realized temperature changes (i.e., estimates for which the effect of

the ocean thermal inertia has been accounted) are about 50 to 80%

of these equilibrium changes. Based on these techniques (invalid as

they may be), temperature changes from 1765 to the present are

expected to be about 0.4 to 2.0°C (0.35 to 1.6°C since 1900). If we

also assume that the latitudinal pattern of the changes will be con-

sistent with the equilibrium changes (probably a poor assumption,

as Indicated above), the present temperature changes are expected

to be about twice the global average at high latitudes and one-third

to one-half the global average at low latitudes.

Stratospheric temperatures at about 25 kin, for which there

would be somewhat less effect of the oceanic lag, 2 would be

expected to have dropped about 2°C since 1765 and about 1°C since

1960, when a reasonably representative array of observations

started to become available. Interpolation would suggest that global

precipitation should have increased several percent, especially in

high latitudes, although the high interannual and spatial variability

would make these changes very difficult to identify (Bradley et al.,

1987). Sea ice should have melted back, although models do not

include processes such as sea ice advection that may obscure or

compensate the meltback. Models of sea level increase are relatively

limited, emphasizing the component due to thermal expansion, but

not adequately treating changes in mountain glaciers or In the polar

icecaps. Simplified ocean models suggest that a rise in sea level of

0.1 to 0.2 m might be expected based on predicted climatic changes

of the last 150 years, but no comprehensive calculation has been

done that treats all factors (and calibrated simulations with simpli-
fied models do not provide an independent check).

Thus, even allowing for approximations, the set of parameters

that are expected to have changed in a manner that is detectable is

2Although the radiative time constant is short, stratospheric temperature
changes will also depend on the tropospheric temperature change, which is
delayed.
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quite sparse and so uncertain that achieving definitive identification

of the greenhouse signal is quite problematical.

=

=

Has the Climate Changed as Expected?

Not only are the observational data sets and the model estimates

limited, but additional problems arise in attempting to associate

changes with the Increasing concentrations of greenhouse gases in a

quantitative manner. The primary difficulty is that the climate has

varied on many different time and space scales due to many factors

in addition to changes in the concentrations of greenhouse gases.

Examples of factors generally considered external to the climate sys-

tem include volcanic eruptions and solar variations, although it

appears that the flux changes caused by such factors are less than

for trace gases (Hansen and Lacis, 1990). Paleoclimatic records sug-

gest that, in addition to responding to cyclic variations in the earth's

orbit and to changes In atmospheric composition, the climate has

varied, even on relatively short time scales (decadal to centennial),

by substantial amounts solely as the result of internal variability.
These internal variations are also apparent in the historical record

(the Medieval Warm Period, ca. A.D. 1100-1250, was probably

somewhat warmer than present, and the Little Ice Age, ca. A.D.

1450-1850, somewhat cooler) and in year-to-year climate variations.

Thus, In evaluating whether the climate has" changed, the role of

other factors in inducing climatic change must also be distinguished

from the greenhouse gas-lnduced effects, even though we are even

less certain of the types of climatic change that these other factors

may have induced.

In spite of all of these limitations, it is nonetheless interesting to
evaluate how well the observed changes In climate match the theo-

retically calculated changes. Changes in near-surface air tempera-
ture have been considered most often. (Changes In sea surface tem-

perature give quite similar results.)

Figure 1 displays the estimates of Northern Hemisphere, Southern

Hemisphere, and global changes in near-surface alr temperature com-

piled by Jones et al. (1991) from land and marine records. Compara-
ble data sets have been assembled by Hansen and Lebedeff (1988)

and by Vinnlkov et al. (1990), each making different adjustments to

assure homogeneity and representativeness of the records. Problems

remain with each set, particularly concerning spatial coverage and

urbanization around stations, but these are steadily being reduced.

The records show significant year-to-year variability, especially In

the 19th century, probably an artifact of the more limited spatial

coverage of the observations. Although there Is a general Increase in
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Figure 1. Area-weighted estimates of annual temperature departures from a

reference normal for the Northern Hemisphere, Southern Hemisphere, and
global land and ocean areas for the period since 1860 (Jones et al., 1991).

the temperature, the increase is less steady in the Northern than in

the Southern Hemisphere, with a rapid rise in the early 20th cen-

tury followed by a period of slight cooling from 1940 to the 1970s

followed by a rapid rise. This uneven pattern of rise is most evident

in the Northern Hemisphere land record, which is often cited as evi-

dence that recent changes in climate are due at least in part to fac-

tors other than the greenhouse effect (e.g., natural variability, sul-
fate aerosols).

It is also important to understand that these curves are compos-

ited from values at many individual points. Although the year-to-

year variation of the global mean is only about 0.5°C, the standard

deviation of the set of individual grid-point values about the global

average value was about 0.75-1°C prior to 1940, then decreasing to

about 0.5°C (Grotch, 1987). Figure 2 presents a three-dimensional

histogram of the distributions of individual grid-point values for
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Figure 2. Three-dimensional histogram of the distribution of area-weighted

temperature anomaly over time (CRU data 1850-i 976). The values for each

year are assumed to be normally distributed. On the lower surface, the esti-

mated average anomaly is drawn as a heavy solid line and the +2o estimates

are shown as lighter lines (Grotch, 1987).

each year of the record, illustrating that the changes in the mean

are well within the bounds of past variations; that is, although the

mean is increasing, particular locations can have quite different

annual anomalies than the global mean. Grotch (1989) has shown

that the correlation between changes at individual grid points and

the global (or hemispheric) average value is positive, but low. Thus,

it is interesting, but not surprising, that particular regions show

patterns that are different than the global average. For example, the

U.S. Historical Climate Network shows a relatively steady average

temperature over the period of record (nighttime temperatures do

rise and peaks tend to decline in time), which may be a consequence

of natural variability, of an inadvertent but compensating increase

in sulfate aerosol loadup, or of other factors, as well as possible

problems with the models.
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Deriving a linear temperature trend 3 from the available record is

also difficult because it depends strongly on the period over which

the trend is calculated. If the period is too short, interannual and

other nongreenhouse variations in the temperature can unduly bias

the estimate; if it is too long, the records are more subject to prob-

lems due to variations in spatial coverage, changes in instrument

protocols, etc. Figure 3a shows estimates prepared by T. Karl (Mac-

Cracken et al., 1990) of the linear trend starting in years from 1880

to 1939 and ending in 1987. (If he had chosen earlier starting years,

the trend would have decreased, and if he had chosen later starting

years, it would have again increased.) He also prepared estimates of

the trend when starting in 1880 and ending in years from 1930 to

1987 (Figure 3b). The trend is clearly very dependent on the starting

and ending dates and does not seem to show an acceleration of the

warming with the accelerating increase in greenhouse gas forcing.

If we, with some hesitation, accept that there has been a warming

of about 0.5°C over the last 100 years due to the increasing concen-

tration of greenhouse gases (and not amplified or diminished by

other factors), this compares with an expectation from model simu-

latlons of about 0.4 to 1.6°C (as indicated earlier). In that the late

19th and early 20th centuries were probably somewhat cooler than

average due to several large volcanic eruptions (and possibly due to

persistence of the Little Ice Age), the warming to date is barely con-

sistent with the lower bound of the theoretical estimates of warming

(accepting, again with some hesitation, all of the approximations in

deriving those estimates and assuming that no new cooling influ-

ences are active). Simplit'ied ocean-atmosphere models also suggest

that observations are near the lower bound of the model projections

(Bretherton et al., 1990).

The temporal patterns of the observed and expected warmings are

also not in accord, especially in the Northern Hemisphere. This may

be due to problems with the observations (station moves, urbaniza-

tion, etc.), with the linearity assumption (could the climate be

slightly intransitive?), or with the possible counterbalancing effects

of other forcing factors (sulfate aerosols, North Atlantic circulation

changes). Over the past decade, several investigators have

attempted to reconcile the simulated and observed behavior by

accounting for solar and/or volcanic effects; each, however, has

arrived at the conclusion that CO2-induced warming is present, but

=

3The increase in radiative forcing since 1750 has actually been not linear,
but gradually increasing. Nonetheless, a linear trend is most often sought in
the absence of better estimates from models.
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Figure 3. Linear trends of global average land temperatures based on data

of Jones (1988) and their associated 95% conJ_clence intervals expressed as

rates of change over 100 years: (a) ending year for all trends is 1987, and

the beginning year is given on the x axis; and (b) ending year for all trends

is glven along the x axis, and the beginning year is 1881. Trends reflect

changes due to changes in both atmospheric composition and to other nat-

ural and human-induced factors (prepared by T. Karl for MacCracken et al.,

1990; used with permission).
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through inconsistent, and often conflicting, analyses (MacCracken,

1983). Natural variability may also be confounding the analysis. A 1

× CO 2 control simulation by Hansen et al. (1988), for example,

shows that the climate may have an inherent natural variability that

could be hiding the greenhouse signal (or, conversely, creating

much of the recent warming). Without a convincing explanation, the

association of the warming with the increases in greenhouse gas

concentrations remains captive to uncertainties in our calculations

and about the role of natural variability and the influence of other

anthropogenlc factors.

In addition, the observed and predicted (interpolated) latitudinal

patterns of the warming are not In agreement with interpolations

from equilibrium calculations (and perhaps should not be expected

to be in agreement). Much of the recent warming has been in middle

and even low latitudes rather than in high latitudes, as suggested in

equilibrium perturbation simulations. However, recent simulations

with coupled ocean-atmosphere models suggest that the high-lati-

tude warming may be delayed for very long periods due to the

deeper mixing of heat in polar regions. Thus, the Importance of this

inconsistency may be fading as more realistic calculations become

available. Overall, about all that can be said is that warming has

occurred over the last century and that some fraction of it (the frac-

tion may range from small to larger than unity) must be due to the

increased concentrations of greenhouse gases.

Equally difficult problems arise when considering changes In

stratospheric temperature and sea ice extent (for both of which the

record is much less complete) and for sea level (for which the predic-

tion and record are both of limited certainty), as explained in the

next section. None of the analyses of individual records provides the

unequivocal association that is being sought.

The Multivariate Approach

The shortcomings of the individual records suggest that it might

prove useful to search for a combination of changes that could be

uniquely associated with changes In the concentrations of green-

house gases (as opposed to volcanic, solar, or other natural influ-

ences). Such a signature or fingerprint approach has great appeal,

but has proven quite difficult in practice, because it requires accu-

rate records of multiple variables over comparable periods (the

records of the array of variables may not be as long, however, negat-

ing some of the benefit of a larger set of variables) and accurate

model projections for multiple variables and for all important inter-

nal and external changes that may be Influencing the climate. As a
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balance to these difficulties, however, the approach enriches consid-

eration of the set of variables by allowing consideration of relative

magnitudes and signs of the changes, spatial and seasonal patterns

and gradients, correlations, and other aspects.

Elements of a possible signature for the greenhouse gases are

shown in Table 2. These indicators have, of necessity, been drawn

from equilibrium rather than from transient model simulations. As a

result, more comprehensive model simulations may change the fin-

gerprint (and not all characteristics listed have yet been confirmed

even in all equilibrium simulations). Three important additional

problems exist. First, the records for many of these variables are

quite limited; second, it remains difficult to provide quantitative the-

oretical estimates of these changes; and third, it is not clear that

these elements create a sufficiently unique fingerprint for green-

house gas-induced changes to allow at least some fraction of past

changes to be distinguished from changes due to natural variability

and to other factors.

Table 2: Possible components of a greenhouse gas-induced
climate signal

Increasing surface temperature

Strong latitudinal gradient over land
Larger changes over land than over the ocean
Larger changes during the winter In high latitudes than during

the summer

Reduced diurnal temperature range

Warmer troposphere

Weaker laUtudinal gradient

Cooling middle and upper stratosphere

Increasing atmospheric water vapor concentrations

Increasing global precipitation

Largest relative change In high latitudes

Retreating sea lce cover

Retreating snow cover and mountain glaciers

Rising sea level

Despite these difficulties, there are preliminary Indications that at

least some of these changes are occurring; at least, none of the ele-

ments are changing strongly in an unexpected direction. The sea

level record, for example, appears to be showing a relatively rapid

Increase (Figure 4).
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Figure 4. Estimates of global mean sea level rise over the last century. The baseline is

arbitrarily selected as the average for the period of 1951 to 1970. The dashed lines
connect the annual mean changes (dots); the solid line represents five-year running

mean. Data are from (a) Gornitz and Lebedeff, 1987, and (b) Barnett, 1988 Orrom
MacCracken et al., 1990; used with permission).

Again, however, there is not yet quantitative and unequivocal asso-

ciation of the changes with the changes in atmospheric composition.

Conclusions

Observations clearly indicate that the climate has warmed since

the mid-19th century--but then, it has warmed before, and the

warming since 1850 has not been spatially consistent and tempo-

rally monotonic. Clearly, changes due to other factors are also



3 74 Modeling the Earth System

occurring, and we have not been able to quantitatively and uniquely

associate the temperature or other climatic changes with the

Increasing concentrations of greenhouse gases. The collective set of

changes that are occurring, however, is certainly suggestive that the

enhanced greenhouse effect is starting to have an effect, even

though we cannot yet use this determination to narrow our esti-

mates of future change. The situation suggests that we are, in quali-

tative terms, closer to a civil conviction of the greenhouse gases (i.e.,

a preponderance of evidence) than to a criminal conviction (i.e.,

beyond a reasonable doubt) and that, in quantitative terms, there is

still homework to do and observations to be gathered before we can

substantially strengthen the case.
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